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ABSTRACT

The Sevan-Akera suture zone ophiolites are relics of a vast ophiolitic nappe which testifies a major obduction event, up to 300 km of horizontal transport,
of the northern branch of Neotethys oceanic crust over the South Armenian/Taurides continental block. Near the locality of Amasia (NW Armenia), garnet-
bearing amphibolites are preserved within a greenschist facies tectonic mélange unit located below the non-metamorphic obducted oceanic unit. The garnet
amphibolites show two parageneses: (1) garnet-amphibole-plagioclase granoblasts which crystallized along the S, foliation intensely folded and recrystallized
into (2) epidote-chlorite-phengite during retrogression and S, deformation. S, and S, deformation stages feature top-to-the-South ductile shearing, interpreted
as the motion of the ophiolite nappe during obduction. Thermobarometry reveals a metamorphic history with two P-T fields: (1) an amphibolite stage, T =
600+20°C and 6 < P < 7 kbar, followed by (2) a greenschist stage, T = 350£30°C and 1.25 < P < 4.5 kbar. “*Ar/**Ar dating on amphiboles and white micas
yields similar within-error ages of 88-92+2 Ma. U-Pb dating on rutile yields an age of 90.2+5.2 Ma. These results are complemented by new and pre-existing
characterizations of lithologies in a similar structural position 40 km east, in the locality of Stepanavan. There, newly identified eclogite yield metamorphic
conditions of T = 575+25°C and 17.5 < P < 20 kbar. The P-T-t history of these metamorphic units argues for a rapid tectonic process featuring intra-oceanic
subduction below a relatively hot oceanic lithosphere, slicing of the overriding oceanic domain, underplating of this subducted material along the hanging

wall of the subduction zone and formation of a metamorphic sole as part of an ‘obduction channel’.

INTRODUCTION

There is still much controversy concerning the explana-
tion of oceanic lithosphere obduction initiation and subse-
quent transport onto the continental crust (e.g., Agard et al.,
2014; Duretz et al., 2015; Héssig et al., 2016a; 2016b;
2017). Obducted ophiolite sequences generally include
thick slices of undeformed oceanic lithosphere originating
from a supra-subduction zone setting, detached from its
mantle basement and emplaced over a continental margin
(Coleman, 1971; Dewey, 1976; Spray, 1983). Models for
obduction initiation include an early stage of oceanic
lithosphere buckling (Agard et al., 2007) or ridge subduc-
tion (Coleman, 1976; Hacker, 1991), leading to intra-
oceanic thrusting, which may result in the development of a
metamorphic sole (e.g., Hacker, 1990; Michard et al.,
1991;Gnos, 1993). Models also feature intra-oceanic sub-
duction which continues to a ‘marginal’ stage at which
point the oceanic lithosphere is thrust over the passive con-
tinental margin or under-plated by the latter (Dilek and
Whitney, 1997; Gray and Gregory, 2000; Engi et al., 2001;
Bortolotti et al., 2005). The relative position of intra-ocean-
ic thrusting initiation, the particular physical and/or geo-
chemical properties of the lithologies composing the in-
volved oceanic lithospheres (e.g., the role of mantle flows
and plume events leading to oceanic plateau emplacement;
Vaughan and Scarrow, 2003; Hissig et al., 2016a; 2916b)
and geodynamic settings recorded throughout the metamor-
phic processes are still subject to debate (e.g., Agard et al.,
2007; 2014; Duretz et al., 2015).

The reconstruction of the geodynamic evolution of
oceanic basins that were formed in the Neyethyan domain
allows a better understanding of the role of the dominant
factors involved in oceanic closure, including obduction
processes. Key examples of obducted ophiolite sequences
are found throughout the Tethyan collisional belts (Oman:
Coleman, 1976; Hacker et al., 1996; Searle and Cox, 1999;
Northern Albania: Carosi et al., 1996; Gaggero et al., 2009;
Turkey-Caucasus-Iran: Adamia et al., 1981; Barrier and
Vrielynck, 2008; Turkey: Gonciioglu and Turhan, 1984;
Hempton, 1985; Lytwyn and Casey, 1995; Okay et al.,
2001; Oberhénsli et al., 2010; 2014; Parlak et al., 2013; Yil-
maz et al., 2014; Eastern Turkey-Lesser Caucasus: Rolland
et al., 2012; Lesser Caucasus: Zakariadze et al., 1990; Ga-
loyan et al., 2007; 2009; south Central Tibet: Ding et al.,
2005; Guilmette et al., 2009). The most studied example is
the Oman ophiolite, which is exceptionally well preserved,
and has led to detailed reconstructions of the obduction
process (Agard et al., 2014, and references therein). Howev-
er, the obduction model developed for this ‘case example’
(e.g., Duretz et al., 2015) needs to be tested with other ob-
duction examples. The history of Central and Northern
Neotethyan ophiolites seems quite different to that of the
Oman ophiolite. The oceanic lithosphere preserved in the
Oman ophiolite was formed within 20 Myr before its obduc-
tion, while the lithologies forming the Lesser Causasian and
Northeastern Anatolian ophiolites are about 80 Myr older
than onset of their obduction (Hissig et al., 2013b; 2016a;
2016b; 2017). The Lesser Caucasus region (Figs. 1 and 2)
presents all the key features to decipher the precise proceeding
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of obduction, leading to widespread outcrops of intact ophi-
olites (e.g., Dercourt et al., 1986) and of metamorphic rocks
(‘metamorphic sole’) found directly underneath the ophio-
lite nappes, whose formation is ascribed to obduction initia-
tion and ophiolite emplacement (e.g., Hacker, 1990; Dilek
and Whitney, 1997; Elitok and Driippel, 2008). Such ‘suture
zone’ lithologies provide key timing and palacogeographic
data for geodynamic reconstructions of the obduction
process. Furthermore, their geometry and geochemistry pro-
vide key information to reconstruct the nature of former
oceanic domains, needed for tectonic reconstructions (e.g.,
Ricou et al., 1985; Stampfli et al., 2001; Stampfli and Borel,
2002; Barrier and Vrielynck, 2008; Barrier et al., 2018).

The Lesser Caucasus region (Figs. 1 and 2), particularly
the Armenian part, features intact and unmetamorphosed
sections of obducted oceanic crust, which formed during
mid-Jurassic times only slightly affected by the later colli-
sional history (c. 180 ~ 150 Ma; Galoyan et al., 2009; Rol-
land et al., 2009b; 2010; Hissig et al., 2013a; 2017). They
feature both a metamorphic sole and an intact sedimentary
obduction front enabling the reconstruction of part of the
obducted ophiolite nappe’s geometry, emplacement timing
and overall kinematics (Sosson et al., 2010; Rolland et al.,
2012; Héssig et al., 2013a).

In this paper, we report new structural, petrologic, geo-
chemical as well as “*Ar/*Ar and U-Pb chronological data
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obtained from sub-ophiolitic metamorphic units (eclogites
and garnet amphibolites). The studied rocks crop out in a
tectonic mélange at the base of the tectonic contact of the
ophiolites in the localities of Stepanavan and Amasia (ap-
proximately 40 km from one another along the Sevan-Akera
Suture in NW Armenia; Fig. 2) exhumed by way of a post-
obduction collision related thrust (Galoyan et al., 2007; Rol-
land et al., 2009a; Héssig et al., 2013a; 2013b; 2017). The
results of geochemical analyses obtained on these metamor-
phic rocks provide insights for the nature and geodynamic
setting of their protolith. The Pressure-Temperature-time (P-
T-t) reconstructions provide insight concerning temperature
variations and burial/exhumation rates of these units
throughout their metamorphic cycle, which comprises intra-
oceanic subduction and subsequent ophiolite emplacement.
These data complement previous P-T-t estimates of other
metamorphic rocks cropping out in the same structural posi-
tion in the area of Stepanavan, featured in Rolland et al.

Island Arc)
@ Hercynian basement

(2009a). Based on this new data pertaining to these meta-
morphic units, we propose a geodynamic reconstruction for
the obduction process along this portion of the Northern
Neotethyan Suture, and for the emplacement of the Lesser
Caucasus ophiolites in Armenia.

GEOLOGICAL SETTING

The Middle East-Caucasus area (Fig. 1) can be divided
into three main sectors, from north to south:

(1) The European platform, whose southern margin is
characterized by the Pontides and Somkheto-Karabargh
magmatic arcs (e.g., Adamia et al., 1981; Rolland et al.,
2016; Okay and Topuz, 2017).

(2) Accreted terranes of Gondwanan origin, including
the South Armenian Block (SAB; Knipper, 1975; Knipper
and Khain, 1980; Hissig et al., 2015a). The SAB likely
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represents the eastern continuation of the Taurides-Ana-
tolides Platform (TAP; Sengor and Yilmaz, 1981). The
northern and southern limits of this sector are underlined by
Northeastern Anatolian-Lesser Caucasus and peri-arabic
units, respectively, which both feature ophiolite belts.

(3) The Arabian platform, to the south of the studied area,
whose collision with the TAP completely closed the Tethyan
realm along this portion of the Alpine-Himalayan Belt.

The Middle East-Caucasus area is characterized by two
distinct suture zones, the Northern Tethyan (Izmir-Ankara-
Erzincan, TAES, and Amasia-Sevan-Akera, SAS, respec-
tively) and the Southern Tethyan (Misis-Andirin, Bitlis and
Zagros) Sutures. They result from the closure of the Pale-
otethys and northern branch of the Neotethys to the north
and the southern branch of the Neotethys to the south of the
SAB-TAP, respectively (e.g., Rolland et al., 2012).

Along the Izmir-Ankara-Erzincan-Amasia-Sevan-Akera
Suture zone (IAES-SAS), ophiolites represent preserved
relics of the fully closed Northern Neotethyan oceanic do-
main (see a review in Hissig et al., 2017), with a well-pre-
served subduction channel interplate contact (Héssig et al.,
2016c¢). These ophiolites show a Jurassic-Early Cretaceous
age and bear multiple geochemical tendencies, interpreted
as reflecting formation in a supra-subduction context (Bor-
tolotti and Sagri, 1968; Palandjyan, 1971; Sokolov, 1977;
Zakariadze et al., 1983; Knipper et al., 1986; Galoyan et
al., 2007; 2009; Rolland et al., 2009b). Furthermore, sub-
duction-related metamorphic rocks are found along this su-
ture zone, which provide insights for Jurassic (Topuz et
al., 2013a; 2013b) and Cretaceous (Rolland et al., 2009a)
subductions.
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Timing of the obduction

Obduction occurred at 90-83 Ma in all of the East Anato-
lia-Armenia region (see a synthesis in Héssig et al., 2013b
and references therein). Coniacian to Santonian (90-83 Ma)
obduction onto the SAB is marked by flysch series rework-
ing the ophiolites at the obduction front and reef series of
similar age sealing the obducted nappe in the southern part
of the SAB (Vedi area: Sokolov, 1977; Sosson, et al., 2010;
Danelian et al., 2014; Figs. 2 and 3). Geological observa-
tions imply that at least two north dipping subduction zones
were active at the same time north of the SAB: (1) an intra-
oceanic zone and (2) farther north another zone along the
southern Eurasian margin (Sosson et al., 2010; Rolland et
al., 2011; 2016;). After ophiolite emplacement, the Northern
Neotethys Ocean was not yet fully closed as indicated by
paleomagnetism data. A maximum of 1000 km subsisted
between the SAB and the Eurasia margin after the obduc-
tion event (Meijers et al., 2015). Thus, obduction preceded a
final subduction stage before onset of the collision-accretion
of the SAB-TAP to the Southern Eurasian margin during the
Late Cretaceous-Paleogene (Rolland et al., 2009b; 2011;
Sosson et al., 2010; Mederer et al., 2013; Meijers et al.,
2017). Afterwards, the Arabia-TAP/SAB collision occurred
during the Late Eocene (Yilmaz et al., 1993; Okay et al.,
2001; Rice et al., 2009; Agard et al., 2010; Rolland et al.,
2012; Pourteau et al., 2013; Sosson et al., 2016;). Cenozoic
volcanism (Moritz et al., 2016; Rezeau et al., 2016; 2017,
Sahakyan et al., 2017;) largely masks the ophiolites, but due
to the recent onset of hard collision, only limited collisional
deformation affected the obducted nappe structure.
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Fig. 3 - Interpretative crustal-scale sketch cross-section of the Armenia-Azerbaijan transect, after Hissig et al. (2013a), modified. Location of the figure is

indicated on Fig. 2.



Structure of the ophiolite

For a synthesis concerning the Lesser Caucasus ophio-
lites, we refer to Galoyan et al. (2007; 2009), Rolland et al.
(2009b; 2010), Sosson et al. (2010) and Hassig et al. (2013a,
2013b; 2017), These works document outcrops of gabbro in-
truding serpentinites dated at c. 175-165 Ma. They are over-
laid by basalts with tholeiitic compositions contaminated by
subduction components and as well as radiolarites of similar
age (Middle-early Late Jurassic; Danelian et al., 2007; 2008;
2010; 2012; Asatryan et al., 2010). Pillow lavas of alkaline
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Ocean Island Basalt (OIB) emplaced in the Early Cretaceous
times in a marine environment can be found directly above
these series, prior to their obduction (Rolland et al., 2009b).

Description of the study areas

The study areas lie in the north-eastern Lesser Caucasus,
near the villages of Amasia and Stepanavan in Northwestern
Armenia (Figs. 2, 4 and 5). There, the Northern Neotethyan
ophiolites crop out in tectonic windows through Cenozoic
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thrusts and normal faults, fully described in Rolland et al.
(2009a) and Hassig et al. (2013a). In this paper, we focus on
the sub-ophiolitic metamorphic rocks, which likely recorded
the variations in P-T conditions prevailing at the base of the
obduction.

In Amasia, a tectonic mélange is found underneath this
ophiolitic series. The tectonic mélange is made of sheared
serpentinites, gabbros, basaltic lavas and metasediments,
metamorphosed in the greenschist facies (Hissig et al.,
2013a). A unit of garnet-bearing amphibolites occurs tecton-
ically below, or within, this latter unit (Fig. 4). A full de-
scription of the structural relations of this unit with the rest
of the Amasia ophiolite is provided in Héssig et al. (2013a).

ARM-11-13 are indicated.

In Stepanavan (Fig. 5), East of Amasia, ophiolites have
been described in association with blueschists and amphibo-
lite facies metamorphic rocks (Galoyan etal., 2007; Rolland
et al., 2009a). These metamorphic rocks are dated by
40Ar/*Ar on phengite (1) at 94-91 Ma, interpreted as the age
of high pressure (HP) peak and (2) at 73-71 Ma, interpreted
as the age of retrogression in low pressure and medium tem-
perature conditions (LP-MT) ascribed to a lower amphibo-
lite facies (HP: P = 12«+1.5 kbar, T = 545+60°C; LP-MT: P
= 5.740.2 kbar, T = 505+67°C; Rolland et al., 2009a). Un-
fortunately no age was determined for later retrogression in
low pressure and low temperature conditions (LP-LT) in a
greenschist facies attested by a distinct mineral assemblage



(Rolland et al., 2009a). In association to these metamorphic
rocks, in this study we report eclogite facies rocks. These
metamorphic rocks evidence the presence of a subduction
zone active during the Middle Cretaceous, which stopped in
the Late Cretaceous at 80-75 Ma (Rolland et al. 2011).

According to the field observations, the geological map
and cross-sections (Figs. 4, 5 and 6), both areas feature:

1 - An ophiolitic unit constituted by serpentinites, gab-
bros, basaltic pillow lavas and volcanic rocks with interlay-
ered reef limestones. This unit represents an un-metamor-
phosed obducted oceanic crust section formed during Mid-
dle and Late Jurassic times, dated mid/late Oxfordian to late
Kimmeridgian/early Tithonian (163-150 Ma) by age-diag-
nostic radiolarian identification in Stepanavan (Danelian et

Miocene - Quaternary volcanic cover E
Eocene volcanic deposits [

1 =g
= Cretaceous volcanics with == 1 Santonian flysch
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al., 2007) and in Amasia (Danelian et al., 2016). Dating of
gabbro amphiboles by “°Ar/3*?Ar yielded 169.0+4.6 to
175.8+3.9 Ma in Amasia (Hassig et al., 2013a).

2 - A sub-ophiolitic metamorphic unit composed of
meta-basalts, meta-sediments and serpentinites. In Amasia
elongated boudins of marbleized limestones along with ser-
pentinites and meta-basalts indicate a top-to-south sense of
shear. Amphibolites show a penetrative S, foliation marked
by amphibole and garnet-rich dark coloured layers alternat-
ing with plagioclase and quartz-rich light coloured layers.
This alternation defines syn-metamorphic SC shear bands
(Fig. 7). An S, foliation and lineation is also present,
marked by chlorite and phengite as well as amphibole and
rolled garnet. These evidence that this unit was tectonized
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IRV W W W W W W W Wl
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Ha551g et al. (20133), re- Late Valanginian -
spectively. Locations are —— Early Barremian limestone
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(deformed) during at least two phases. Both phases, respon- posed of boudins of glaucophane-bearing meta-volcanic

sible for the formation of S, and S,, are coherent with south- rocks and meta-sediments (micaschists, marbles, metacon-

ward sense of shear during thrusting (Fig. 7). glomerates, quartzites, and rare gneiss blocks) (Roland et
In Stepanavan, blueschists and eclogites are mainly com- al., 2009a).

Fig. 7 - Micrographs of investigated Amasia (A-C) and Stepanavan (D) samples, and interpretative sketches. (A1) and (A2), micrograph of a thin section of
garnet amphibolite sample AR-08-09¢ in plain and cross-polarized light, respectively. (A3), sketch of thin section photographs. Cross cutting relationships of
amphiboles with micas (Phg) and chlorites (Chl) indicate the existence of amphiboles (Am) prior to micas. This is also supported by the garnets (Grt) and am-
phiboles, which are molded by micas and chlorites. The folded pattern of amphiboles defines a first foliation S, that is overprinted by the chlorite-phengite S,,
which appears to be in the axial planes of the folds drawn by the S, foliation. (B), back-scatter image of garnet amphibolite sample AR-09-08. Lineation is ex-
hibited with the alignment of amphiboles, white micas and chlorites. (C), micrograph of garnet amphibolite sample AR-09-09. The garnet has a ‘snowball’
shape, and is rolled in response to syn-kinematic growth during shearing. (D), micrograph of eclogite sample ARM-11-13 from Stepanavan.



3 - In both localities, these two units are thrust on top of a
southern (third) unit comprising brecciated basalts overlain
by Early Cretaceous limestones, unconformably covered by a
Late Paleocene flysch grading up into Early Eocene lime-
stones and Mid- to Late Eocene volcanogenic deposits.

This structure in the Stepanavan area gives timing for fi-
nal collision of SAB and Eurasia before the Late Paleocene,
a little older than recorded in the rest of the Lesser Caucasus
(before late-Middle Eocene; see Sosson et al., 2010). Ongo-
ing post-collisional magmatism is represented by a Miocene
to Quaternary volcanic cover sealing the nappe-stack.

GEOCHEMISTRY OF OPHIOLITIC ROCKS

The results of the analyzed samples of Amasia and
Stepanavan ophiolites are coherent with all of the other
ophiolites of the SAB, namely Sevan and Vedi, as well as
with those of the Northeastern Anatolia (i.e. Refahiye,
Sahvelet and Karadag; Parlak et al., 2013). They all origi-
nate from a singular and intact section of oceanic crust, as
they are all described as Lherzolite Ophiolite Type (LOT)
with comparable petrological and geochemical composi-
tions (Héssig et al., 2013a; 2013b; 2017). The different
ophiolites outcrops are thus interpreted as the result of one
major obduction event (Galoyan et al., 2009; Robertson et
al., 2013; Hassig et al., 2017). Analytical procedures can be
found in Supplementary Data S1.

Here, we present new data concerning the Stepanavan
and Amasia ophiolites and the related metamorphic rocks.
Analyses were segregated into two groups: (1) magmatic
rocks (basalt, gabbro and plagiogranite) of preserved ophio-
lite units and (2) metamorphic rocks from the sub-ophiolitic
units, which led to the identification of two distinct geo-
chemical tendencies described below (Fig. 8; Table 1).

Supra-subduction tholeiitic signature

A tholeiitic (MORB-type) affinity is identified for the
gabbro samples with a less marked fertile contamination, in
comparison to some basalt samples. The variations in trace
elements are indicative of a supra-subduction environment
(Fig. 8). Negative Eu and Ti anomalies with relative Nb-Ta
depletion are interpreted as resulting from the melting of a
mantle source contaminated by subduction fluids. The ophi-
olite assemblages indicate that they derived from an oceanic
crust in a back- or fore-arc basin position.

Similarly to those unmetamorphosed ophiolitic rocks, the
analyzed Stepanavan blueschist from the sub-ophiolitic meta-
morphic rocks has a tholeiitic affinity, mainly characterized by
enrichments in LILEs (e.g., Ba, Th, U) and negative Nb, Zr,
and Sr anomalies which also resemble those of subduction-re-
lated arc volcanics (Perfit et al., 1980; Pearce et al., 1984). It is
thus possible that these amphibolites derive from the ophiolite
itself, thus sharing a common origin as the ophiolite.

Alkaline signature

A second affinity was found in rocks with an alkaline
basalt composition (i.e. Hassig et al., 2013b) (Fig. 8B). The
garnet-bearing amphibolites of Amasia and blueschists of
Stepanavan have a similar composition as alkaline basalts,
which may suggest a similar origin. Plotted in the Zr/Ti vs.
Nb/Y Pearce diagram (Fig. 8C) these metamorphic rocks
are consistent with an OIB signature. In particular, the sam-
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ples show well-marked depletions in HREE (Figs. 8D1 and
8D2), which are ascribed to a source containing garnets
(e.g., Rollinson, 1993).

The geochemical signature and the age of the Amasia
ophiolites attest that they formed during the Jurassic in a
fore- or back-arc supra-subduction marginal basin setting
(Hassig et al., 2013a). Further, the similar ages and compo-
sitions concerning the obducted ophiolites onto the SAB
strongly suggest that these are scattered relics of one major
obduction event.

In N-MORB normalized multi-element spidergrams (Fig.
8D) the alkaline amphibolite and blueschist samples display
patterns with enrichments in incompatible elements and
slightly negative Nb and Sr anomalies. These patterns are
consistent with those of typical ocean island basalts (Sun and
McDonough, 1989). Such a setting has already been docu-
mented by Galoyan et al. (2007; 2009) and dated at 117 Ma
for alkali pillow lavas in the Vedi area (Rolland et al., 2009b).

PETROGRAPHY AND MINERAL CHEMISTRY
OF SUB-OPHIOLITIC METAMORPHIC ROCKS
IN THE LESSER CAUCASUS

For the sub-ophiolitic unit of Amasia two mineral assem-
blages have been distinguished.

Previously, in Stepanavan three mineral assemblages
have been recognized in the sub-ophiolitic blueschist unit
ascribed to HP-LT (High Pressure-Low Temperature), LP-
MT (Low Pressure-Mid Temperature), and LP-LT (Low
Pressure-Low Temperature) conditions (Rolland et al.,
2009a). In addition to these existing parageneses, a forth
mineral assemblage has been identified (HP-HT).

Amasia sub-ophiolitic metamorphic unit

Two mineral assemblages have been identified in the
garnet-bearing amphibolites after optical microscope obser-
vations (Fig. 7). They are: (1) an amphibolite facies assem-
blage (amphibole+plagioclase+garnet), and (2) a greenschist
facies assemblage (white mica+chlorite). In the following
sections, mineral name abbreviations follow Whitney and
Evans (2010). Analytical procedures are described in Sup-
plementary Data S7.

Amphibolite facies assemblage

The main metamorphic assemblage found in garnet-am-
phibolite unit is characterized by garnet, amphibole, rutile,
plagioclase, ilmenite and quartz which underline the main
foliation S, (Fig. 7).

Garnet grains are poikiloblastic, millimetre to centimetre in
size, containing inclusion trails of quartz and amphibole
arranged along a ‘snow-ball” spiral pattern (Fig. 7C). Garnets
are anhedral and intensely fractured. The fractures and rims
are filled and moulded by white mica and chlorite, which re-
crystallize along a S, foliation (Figs. 7A and 7B). Microprobe
analyses (Supplementary Data S2; Fig. 9A) show that garnets
are solutions of almandine (57.8 to 68.6%), pyrope (8.1 to
32.9%), grossular (7.3 to 27.6%) and spessartine (0.05 to
5.1%) end members. Two tendencies have been identified:
low pyrope (samples AR-08-09c¢ and AR-09-09) and low
grossular compositions (sample AR-09-08). Garnets are not
chemically zoned (Fig. 9B). Instead they show a snowball pat-
tern (Fig. 7C), which is a sign of their syn-kinematic growth
during simple shearing, coeval with amphibole S, foliation.
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Fig. 9 - Diagrams of analyzed Amasia garnet amphibolite and Stepanavan eclogite minerals. (A), triangular plots showing chemical compo-
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Amphiboles of the Amasia amphibolites mark the earli-
er S, foliation (Fig. 7A). They are fractured and have nu-
merous fractures and irregular contacts with chlorite +
phengite indicating their breakdown into these latter miner-
als (Fig. 7B). At the thin section scale, they are folded in
isoclinal folds with axial planes parallel to the S, foliation
marked by phengite + chlorite (Fig. 7A). Amphibole crys-
tals are moulded as well as cross-cut by phengite and chlo-
rite. They have fairly homogenous compositions (Supple-
mentary Data S3; Fig. 9C). A slight increase of Fe and Ca
to the detriment of Mg is observed from core to the mineral
rims. The amphiboles observed are all high temperature
type amphiboles, with intermediate compositions between
barroisite, pargasite, tschermakite and edenite poles (Leake
etal., 1997).

Rutile (< 1% vol.) is found in all the amphibolites. It is
associated with amphiboles, garnets and plagioclases.
They appear as inclusions but mainly in the S, foliation
with elongated prismatic shapes and brownish colour in
natural light. Using Back-Scattered Electron (BSE) imag-
ing, no zoning is observed. Many of them have a dark au-
reole of ilmenite.

Plagioclase is scarce and of intermediate composition
(between oligoclase and andesine).

Greenschist facies assemblage

The greenschist facies assemblage (or epidote amphibo-
lite minerals) marks the S, foliation (Fig. 7), and thus con-
stitutes a later metamorphic stage. It is characterized by the
presence of chlorite, epidote and white mica. The chlorite,
epidote and phengite most often cross-cut, wrap and mold
amphibole and garnet (Figs. 7A, B).

The white micas are phengitic. They are intermediate sol-
id solutions of muscovite and celadonite with a level of Si**
substitution varying between 2.94 and 3.34 a.p.f.u. (atoms
per formula unit) with a mean value of 3.12+0.07 a.p.f.u.
(Fig. 9D; Supplementary Data S5). Massonne and Schreyer
(1987) have shown that Si content of phengite increases
progressively with pressure. Thus, these compositions agree
with crystallization of the phengites during a relatively short
stage of the P-T evolution as evidenced by the narrow
spread in Si** substitution found in the analyses. Locally,
paragonite is interlayered within phengite.

The analyzed chlorites (Supplementary Data S4) mostly
range at intermediate Xp, [Fe/(Fe + Mg)] contents (0.57 <
Xp. <0.78) (Fig. 9E).

Stepanavan sub-ophiolitic metamorphic unit

Eclogite facies minerals

Metabasalt sample ARM-11-13 exhibits a garnet-chlo-
rite-phengite-quartz-omphacite-hematite assemblage. The
presence of omphacite indicates high pressure conditions.

Garnet grains are euhedral, slightly elongated along a
well markedfoliation and intensely fractured (Fig. 7D). Mi-
croprobe analyses (Supplementary Data S2; Fig. 9A) show
that garnets are homogeneous solutions of almandine (60.3
to 62.7%), pyrope (5.8 to 7.8%), grossular (16.9 to 19.2%)
and spessartine (12.1 to 17.0%) end members. Their geome-
try suggests discreet low-angle rotation during syn-kinemat-
ic growth throughout simple shearing underlined by phen-
gite. This would be coeval with phengite growth in relative-
ly stable conditions.
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PRESSURE-TEMPERATURE CONDITIONS
OF THE STEPANAVAN AND AMASIA
SUB-OPHIOLITIC METAMORPHIC UNITS

The P-T history is investigated using pseudosection mod-
elling utilizing mineralogical and whole-rock composition
of the samples ARM-11-13 and AR-08-09c of Stepanavan
and Amasia sub-ophiolitic metamorphic units, respectively.

THERIAK-DOMINO pseudosection modelling

The pressure and temperature conditions of the amphibo-
lite facies assemblage were inspected with pseudosection
modelling performed in the Si-Al-Fe-Mg-Ca-Na-Ti-K-H,0
system and calculated with THERTAK-DOMINO (De Capi-
tani and Petrakakis, 2010), using the internally consistent
thermodynamic database of Bermann (1988) and Holland et
Powell (1998). Figures 10 and 11 present P-T pseudosec-
tions of sample AR-08-09¢ (Amasia) and sample ARM-11-
13 (Stepanavan) constructed using whole rock composition
(Supplementary Data S6 and S7), respectively.

In order to further constrain the P-T evolution of meta-
morphic units, garnet composition isopleths for Stepanavan
and garnet composition along with per formula units
(a.p.fu.) of X, in chlorite and Si in phengite isopleths for
Amasia were plotted (Supplementary Data S4 and S5).

Amasia sub-ophiolitic metamorphic unit

Amphibolite facies

For the first stage of metamorphism of this unit, the cal-
culated field (garnet-amphibole-feldspar-biotite-quartz-il-
menite-magnetite) which best matches the paragenesis ob-
served in sample ARM-08-09c is 4 < P < 8 kbar and 550°C
< T < 700°C (Fig. 10). Biotite was not directly observed, yet
chlorite resulting from retromorphosis and alteration of bi-
otite is visible. The calculated field is further constrained us-
ing garnet compositions. The intersection of the 0.65 and
0.7 almandine, with 0.17 and 0.19 grossular, and 0.13 py-
rope isopleths corresponds to the measured proportions in
garnet composition in sample AR-08-09¢ (approximately
67% almandine, 18% de grossular 13% pyrope). This new
field is bounded to P = 6.5+0.5 kbar and T = 600+20°C
(Fig. 10). These amphibolite facies conditions correspond to
the first and main stage of metamorphism recorded in garnet
amphibolites.

Greenschist facies

The second (greenschist facies) stage of metamorphism
of the Amasia sub-ophiolitic metamorphic unit corresponds
to the calculated P-T field featured by the feldspar-il-
menite-chlorite-phengite-clinozoisite-epidote-quartz assem-
blage, which best matches the second paragenesis observed
in ARM-08-09c. Yet, the absence of clinozoisite or epidote
in the sample may be due to 